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Ordering of Time-Difference Data From Multispeetral Imagery 
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Our goal is to exhibit multispectral time-difference data in factored form so as to emphasize signal differences, 
assml~ed to be spatially structured, and isolate noise, which is assumed to be spatially unstructured. The method we 
use is a variant of the MAF procedure (Min/Max Autocorrelation Factors), a general purpose technique which 
extracts p orthogonal linear combinations or factors of the p-variate data which have maximal to minimal spatial 
autocorrelation. We discuss the application of MAF to time-difference imagery, and present three examples. The first 
two examples were generated from Landsat MSS image pairs and the third from Daedalus airborne scanner imagery. 

Introduction 

A number of authors (Lodwick, 1979; 
1981; Byrne et al., 1980; Richards, 1984; 
Ingebritsen and Lyon, 1985) have applied 
standard principal components analysis 
(PCA) to the problem of detecting and 
classifying temporal change in remotely 
sensed imagery. Each of these studies 
involved geographically registered Land- 
sat multispectral scanner (MSS) imagery. 
Lodwick (1979) looked at seasonal 
changes using the first two principal 
components (PCs), by differencing the 
PC scores between images or by using 
linear regression across a number of 
images. Byrne et al. (1980) treated two 
Landsat MSS images of the same area as 
a single eight-channel data set, and noted 
that PCA of the augmented data set gen- 
erated higher order PCs that contained 
information about temporal change. 

*Now at U.S. Geological Survey, Menlo Park, CA 
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Richards (1984) used the same method 
and reported similar results. 

Ingebritsen and Lyon (1985) showed 
that the method of Byrne et al. often 
leads to specific types of change-related 
PCs, which they referred to as "Abright- 
ness" and "Agreenness" in analogy to 
Kauth and Thomas' (1976) "brightness" 
and "greenness." They noted, however, 
that the apparent success of this method 
in distinguishing separate "stable" and 
"change" components is largely a func- 
tion of the restricted dimensionality of 
Landsat MSS data, rather than the 
method itself. The method is not ex- 
pected to be generally effective, and fails 
to take advantage of the data-compres- 
sion and ordering properties of PCA be- 
cause it does not operate directly on the 
t ime-change data. 

We suggest applying PCA and the 
Min/Max Autocorrelation Factors (MAF) 
process (Switzer and Green, 1984) di- 
rectly to time-difference imagery. Either 
standard PCA or the MAF process can be 
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used to order and reduce multispectral 
t ime-change  information. Standard PCA 
produces decorrelated variables that are 
ordered based on a simple variance crite- 
rion, while the MAF process produces 
decorrelated variables that are ordered 
according to the degree of spatial auto- 
correlation. Since noise is commonly asso- 
ciated with low spatial autocorrelation, 
MAF provides a method for noise sep- 
aration which is more rational than the 
variance criterion associated with stan- 
dard PCA. A brief description of MAF is 
given in the next section. 

MAF reduces to standard PCA when 
the multiband noise vector is proportional 
to the identity matrix; that is, when there 
is constant noise variance in all channels 
of the t ime-difference image and un- 
correlated noise between channels. Typi- 
cally it is difficult to know when this 
property obtains because the noise com- 
ponents of the data are not separately 
observable. However, for multispectral 
systems in which all frequency bands have 
the same noise variance (e.g., Landsat 
MSS) the PCA and MAF solutions gener- 
ally are similar. 

Since the MAF procedure is a gener- 
ally effective method of isolating noise, 
and for the sake of brevity, we emphasize 
the MAF analysis in this paper. PC score 
images are produced in the course of the 
MAF algorithm, so it is straightforward to 
refer to both the PC and MAF images 
during interpretive processing. 

Methodology 

Let Z l(x ) denote the p-vector of en- 
ergy measurements (gray levels) in P 
selected wavelength bands for a pixel at 
location x measured at time 1. Similarly 
let Z2(x ) denote the vector of energy 

measurements at x measured at time 2. It 
will be immaterial whether or not these 
energy measurements have been previ- 
onsly rescaled (linearly) to give constant 
variance for each channel across the spa- 
tial domain D of interest, provided that 
the same rescaling has been applied at 
both times. Indeed, any fixed uonsingular 
matrix transformation of the p-variate 
field, e.g., to raw or rescaled factor scores, 
will not affect the final MAF res/dts, pro- 
vided that the same transform has been 
applied to the images at both time points. 
This property is obtained because we are 
dealing with a correlation rather tban a 
variance criterion. Let 

Z . ( x ) =  Z 2 ( x ) -  Zj (x) ,  

where Z , ( x )  is the p-variate t ime-dif-  
ference field on the domain D. The goal 
is to exhibit this difference field in such a 
way as to emphasize the spatially struc- 
tured signal differences and isolate the 
spatially unstructured noise. The method 
we use is a variant of the MAF procedure 
described in Switzer and Green (1984). 
The MAF procedure is a general purpose 
technique which extracts p orthogonal 
linear combinations or factors of the p- 
variate data which have maximal to 
minimal spatial autocorrelation. 

The significant properties of the factors 
derived from MAF are as follows: 

i. The ordering of MAF factors is 
according to degree of spatial auto- 
correlation with the first factor hav- 
ing the maximum possible spatial 
autocorrelation and the last factor 
the minimum possible. 

ii. Unlike standard PCA, MAF factors 
are invariant to rescaling or other 
linear transformations of the data. 
In the case of time-differenced 
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imagery neither MAF nor the 
standard PCA is invariant when 
different rescalings are applied to 
the separate images at the two time 
points. 

iii. MAF reduces to the ordinary PCA 
only when the covariance matrix of 
the multichannel noise vector is 
proportional to the identity matrix. 

The rationale for the application of 
MAF to time-difference spatial imagery 
is as follows: Those linear combinations 
of the p channels which had no signal 
change across the image between time 1 
and time 2 should exhibit pure noise. We 
suppose that noise characteristically shows 
little spatial coherence; therefore, the 
minimal autocorrelation factor is taken to 
be an optimal representation of a pure 
noise component. Conversely, the signal 
change which has the greatest degree of 
spatial coherence should emerge as the 
maximal autocorrelation factor. The MAF 
algorithm is thus designed to separate 
noise from time changes on multiple-pixel 
scales. 

Application 

A computationally straightforward way 
to generate the MAF solution is as fol- 
lows. First, perform a PC transformation 
on the time-difference data to produce 
uncorrelated equal-variance variables; 
second, operating on the PC score image, 
generate spatial covariance matrices based 
on horizontal and vertical shifts within 
that image; third, create a pooled spatial 
covariance matrix by computing the root 
mean square of the covariance matrices 
of step 2; and, finally, obtain the PC 
solution for the pooled covarianee matrix. 
This is the MAF solution for the t ime-  
difference field. 

There are two kinds of change which 
the MAF procedure will not detect. First, 
if the time change is a constant incre- 
ment  or decrement in the signal across 
the whole image, then this situation is 
indistinguishable to MAF from a zero 
increment, i.e., no signal change at all. 
Other methods will easily distinguish this 
case (e.g., simple differencing), but in 
fact such changes are commonly attribu- 
table to instrumental or atmospheric fac- 
tors that are not of interest to the in- 
terpreter. Second, if the time change is 
spatially very spotty, i.e., only affecting 
isolated pixels or very small groups of 
pixels, then MAF will also have difficulty 
distinguishing this situation from the no- 
change situation. The absolute size of a 
changed area that could be "overlooked" 
by MAF is governed by (1) pixel size and 
(2) the size of the vertical and horizontal 
shifts used in the MAF algorithm. We 
generally use unit (1 pixel) shifts. A possi- 
ble example is the detection of very small 
cleared areas against a forested back- 
ground. However, if the spectral changes 
in such small areas are similar to those in 
larger changed areasmas will often be 
the casemthe  small areas will be identi- 
fied along with the larger ones. It should 
also be noted that the MAF algorithm 
will not necessarily detect changes that 
are expressed only as an increase or de- 
crease in spatial variability. 

The same properties of MAF that make 
it possible to overlook spotty time change 
may be desirable in another respect. Dif- 
ference images are in general extremely 
sensitive to misregistration, even when 
good registration accuracy is acheived. 
MAF should tend to identify misregistra- 
tion effects in the time-difference field as 
noise, as they will generally have little 
spatial coherence. 
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MAF, like other multivariate methods 
of analysis, operates on covariance 
matrices. These are calculated globally 
for any image. However, since the defini- 
tion of an image is arbitrary, one might 
calculate separate covariance matrices for 
subimages and produce a separate more 
particular analysis for each subimage. We 
have not explored this possibility in this 
paper. 

In the examples below, the difference 
images and PC score images produced in 
the course of the MAF algorithm are 
compared with the MAF images. For in- 
terpretive purposes, and to facilitate com- 
parison with standard PCA, it is useful to 
rotate the MAF solution vectors back into 
the original data space. This is a simple 
linear transformation, and in the exam- 
ples below the MAF vectors are de- 
scribed in terms of the original data space. 

Examples 

We present three examples of MAF 
processed time-difference imagery. In 

each case preprocessing steps included 
geographic registration of a 256×512 
pixel subscene, resampling (using bicubic 
interpolation), and generation of a dif- 
ference image. The difference data were 
normalized to unit variance. For some 
applications transformation of the raw 
data from each image to percent reflec- 
tance might be a usefifl additional step, as 
the MAF algorithm is potentially sensi- 
tive to differences in solar flux. 

The first two examples are generated 
from Landsat MSS image pairs. The first 
is from an area in the Okanogan High- 
lands province of Washington State; the 
second is from the western Carson Des- 
ert, NV. MAF weights for these examples 
are given in Table 1, 'along with the re- 
sults of standard PCA for comparison. In 
general, the maximal and minimal PCs 
are similar to the corresponding MAF 
factors, as expected for systems in which 
all frequency bands have the same noise 
variance (Switzer and Green, 1984). The 
Okanogan Highlands imagery (Fig. 1) in- 
cludes the area in and around Midnite 

TABLE 1 MAF and PCA Weights For the Landsat MSS Examples 

BAWD 4 BAND 5 BAND 6 B,~N~) 7 

Okanogtm Highland Example 

1 0.72 1,48 0.71 2.20 
MAF 2 1.12 0.44 (I.28 0.00 

weights 3 0.14 1.58 3.88 2,72 
4 3.34 3.10 1.09 0.93 
1 0.'27 0.28 0.28 0.26 

PC :2 0.73 0.61 0.43 (I.93 
weights 13 2.40 3.04 1.51 0.87 

4 188 0.82 3.23 :2.4,5 

l 1 ..56 3.59 0.59 I}~2 
MAF 2 (I.62 1.32 2.15 2.64 

weights 3 0.79 1.45 4.75 :; 54 
4 4.96 4.82 O. 10 0.02 
1 0.31 0.32 0.32 0,24 

PC 2 0.46 0.43 0.32 (174 
weights 3 0.68 0.21 1,86 l.;34 

4 2.10 2.3(/ 0.37 o IS 

Carson Desert Example 
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FIGURE 1. 'Landsat MSS example | rom the Okanogan Highlands, WA. Difference images are shown on 
the left, and MAF results on the right. The basic structure of the time change is clear in the unfactored 
difference images, and MAF simply reveals the true dimensionality. 
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Mine, a large open pit uranium mine. 
The images used in this example were 
acquired 8 August 1973 and 29 July 1980. 
Changes between the two dates are re- 
lated primarily to expansion of the mine 
area, differences in the condition of the 
vegetation, and soil moisture differences. 

MAF 1 shows the area of expansion as 
an anomalously bright area in the center 
of the image. The area that had been 
mined by 1973 is the roughly horseshoe- 
shaped area of moderate tone encircled 
by the area of expansion. Although MAF 
1 and PC 1 are very similar, MAF 1 
distinguishes the area of expansion more 
explicitly. The loading pattern for PC 
1 is relatively uniform, while MAF 1, 
[1.56 3.59 0.55 - 0.92], is most heavily 
weighted on the bands in which the area 
of expansion is most distinct from its 
surroundings (see Fig. 2). Thus maxi- 

mal autocorrelation is obtained by em- 
phasizing the differences between the 
area of expansion and the remainder of 
the image, allowing the area to be mapped 
as two large, spectrally distinct, relatively 
homogeneous units. Because MAF 1 has 
the property of maximal autocorrelation, 
it will tend to divide the t ime-difference 
field into a few broadly contrasting areas. 

MAF 2, [ - 0.62 - 1 . 3 2  2.15 2.64], is 
less straightforward to interpret. It is 
somewhat similar to PC 2, which clearly 
responds to changes in green biomass. 
Outside the mine area, MAF 2 also re- 
sponds to changes in green biomass, but 
its map shows quite a bit of spatial vari- 
ability in the mine area itself. A pond 
near the north end of the mine, within 
the area of expansion, appears as a dark 
anomaly, as does the pre-1973 mine area, 
perhaps due to greater soil moisture at 
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FIGURE 2. Selected spectra from tile Okanogan Highltmds difference 
image shown in Fig. 1: (11) area of expansion, 8 /73-7 /80 ;  (A) area 
mined prior to 8/73; (o) unmined area. 
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the time of the 1980 image. The area of 
expansion, aside from the pond, is mod- 
erate to bright in tone. 

MAF 3 and MAF 4 contain little or no 
useful spatial information from an inter- 
pretive standpoint and represent the suc- 
cessfully isolated noise components. In 
this example the basic structure of the 
change is fairly evident from the unfac- 
tored difference imagery, and the MAFs 
simply reveal the true dimensionality. 
MAFs 3 and 4 are very similar to PCs 3 
and 4; as anticipated, both methods ap- 
parently provide noise separation. 

The Carson Desert imagery (Fig. 3) 
includes much of the wetland created by 
the terminal sink of the Carson River. 
The imagery used in the example was 
acquired 26 May 1973 and 6 August 1973. 
Change during this period was primarily 
related to a decline in water level, changes 
in green biomass, and the appearance 
and disappearance of salt efflorescence. 

In this example, MAF 1 is very similar 
to PC 2 and MAF 2 is very similar to PC 
1, i.e., the ordering with respect to the 
spatial criterion is different than the vari- 
ance ordering. 

MAF 1, [ - 0 . 7 2  - 1.48 0.71 2.20], 
highlights areas that changed from shal- 
low water to mudflats or moderately deep 
water to shallow water, and wetland areas 
where green biomass increased. The rela- 
tively few dark anomalies include some 
small ponds in which the amount of sus- 
pended sediment has decreased (near the 
Carson River distributary system, on the 
west side of the image), and areas outside 
the wetland where the amount of green 
biomass has decreased. 

MAF 2, [1.12 0.44 0.28 0.00], high- 
lights areas that changed from mudflats 
or very shallow water to dry land, and 
areas where a salt crust developed. Areas 

where salt efflorescence decreased or dis- 
appeared are shown as numerous and 
distinct dark anomalies. 

As in the Okanogan Highlands exam- 
pies, detector striping is enhanced by 
MAF 3 and MAF 4. In this case, how- 
ever, MAF 3 also contains spatial infor- 
mation that is useful in interpretive 
processing, while MAF 4 generally iso- 
lates noise. MAFs 3 and 4 are only crudely 
similar to PCs 3 and 4. 

The first two examples do not demon- 
strate the superiority of MAF with regard 
to isolating the noise component of the 
t ime-difference field, as they involve a 
system in which the frequency bands have 
equal noise variance, so that PCs and 
MAFs are roughly correlated. Generally, 
we would expect the degree of correla- 
tion between the two methods to de- 
crease as the number of bands increases, 
as with more spectrally complicated data 
it becomes more likely that noise will 
have different statistical properties in dif- 
ferent bands. Our final example allows 
the superior ordering and noise sep- 
aration properties of the MAF method to 
be demonstrated. 

This example was generated from a 
pair of Daedalus airborne scanner 
(AADS-1268) images of an area west of 
Palo Alto, California (Fig. 4). The band 
positions include the seven Thematic 
Mapper bands and four additional bands 
in the visible and near infrared. The 
imagery used in the example was acquired 
23 April 1982 and 13 September 1983. 
Much of the area is within Stanford Uni- 
versity's Jasper Ridge Biological Preserve, 
and changes visible in the imagery are 
largely related to natural seasonal changes 
in the vegetative cover. 

In this example PCA of the time-dif- 
ference data does not provide noise sep- 



92 

DLF FEB_E N CE_ I_MA_G_E_ 

BAND 4 

P SWITZEB AND S. E. INCEBRITSEN 

M AF_P_ROCE&SING OF DIFFERENI~_ES 

MAF 1 

B A N D 5  M A F 2  

BAND 6 MAF 3 

BAND 7 MAF 4 

N 
i~ 0 20 KM 

I I 

FI(;URE 3. Landsat MSS example from the Carson Desert, NV. Difference images are ~how~ on the left, 

tilld MAF results on the right. 
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FIGURE 4. Example generated from Daedulus airborne scanner data acquired west of Palo Alto, CA. 
Results of PCA of the time-differenced field are shown on the left, MAF results on the r ight  Unlike PCA, 
MAF clearly isolates noise in the t ime-difference field. 
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aration. While there are several noisy PCs 
(e.g., PCs 9, 10, and l l ~ F i g .  4), there is 
no PC that clearly isolates noise. The 
MAF process, on the other hand, clearly 
isolates noise in the time-difference field 
(e.g., MAF l l - - F i g ,  4). 

Summary 

A number of authors have applied 
standard PCA to the change-detection 
problem. Byrne et al. (1980), Richards 
(1984), and Ingebritsen and Lyon (1985) 
all treated registered Landsat MSS image 
pairs as eight-band data sets, and per- 
formed PCA on the augmented data sets. 
This method is not expected to be gener- 
ally effective, and fails to take advantage 
of the data-compression and ordering 
properties of PCA because it does not 
operate directly on the t ime-change data. 

We suggest applying PCA and MAF 
process (Switzer and Green, 1984) di- 
rectly to time-difference imagery, with 
the goal of separating the signal and noise 
components of the time-difference field. 
The MAF procedure is favored because 
(unlike standard PCA) it is a generally 
effective method of isolating noise. 

Even in the case of low-dimensional 
data (e.g., Landsat MSS) the MAF al- 
gorithm described in this paper is useful 
in terms of clarifying the spatial structure 
of change and revealing the true dimen- 
sionality of t ime-change data. With more 
spectrally complex scanner imagery, the 
data compression properties of the 
method become more usefid. 
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